0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra

نویسنده

  • Jia Huang
چکیده

We define an action of the 0-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their (q, t)-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics. Résumé. Nous définissons une action de l’algèbre de Hecke-0 de type A sur l’anneau Stanley-Reisner de l’algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur (q, t)-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetric multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jia Huang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

We study combinatorial aspects of the representation theory of the 0-Hecke algebra Hn(0), a deformation of the group algebra of the symmetric group Sn. We study the action of Hn(0) on the polynomial ring in n variables. We show that the coinvariant algebra of this action naturally carries the regular representation of Hn(0), giving an analogue of the well-known result for the symmetric group by...

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

The Multiplicity Conjecture for Barycentric Subdivisions

For a simplicial complex ∆ we study the effect of barycentric subdivision on ring theoretic invariants of its StanleyReisner ring. In particular, for Stanley-Reisner rings of barycentric subdivisions we verify a conjecture by Huneke and Herzog & Srinivasan, that relates the multiplicity of a standard graded k-algebra to the product of the maximal shifts in its minimal free resolution up to the ...

متن کامل

Derived Category of Squarefree Modules and Local Cohomology with Monomial Ideal Support

A squarefree module over a polynomial ring S = k[x1, . . . , xn] is a generalization of a Stanley-Reisner ring, and allows us to apply homological methods to the study of monomial ideals more systematically. The category Sq of squarefree modules is equivalent to the category of finitely generated left Λ-modules, where Λ is the incidence algebra of the Boolean lattice 2. The derived category D(S...

متن کامل

The Coloring Ideal and Coloring Complex of a Graph

Let G be a simple graph on d vertices. We define a monomial ideal K in the Stanley-Reisner ring A of the order complex of the Boolean algebra on d atoms. The monomials in K are in one-to-one correspondence with the proper colorings of G. In particular, the Hilbert polynomial of K equals the chromatic polynomial of G. The ideal K is generated by square-free monomials, so A/K is the Stanley-Reisn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014